Hilaire Fernandes

CRDP Aquitaine - OFSET

(O B «

>

<

>

Q>

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

© About the speaker
© What is interesting to learn?

© Smalltalk
@ The language
@ A few examples

© Squeak IDE
@ A tour in some developer tools
@ Programming scenarii

© Conclusion

© Resources

Contents

About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

@ Working at CRDP Aquitaine - France, a resource centre for
pedagogical documentation and ICT in education. We do
consulting, support and development for the educational
institution.

@ President of the OFSET organisation, to support free software
development in education.

@ Author of Dr.Geo, an interactive geometry software. It is a
massive oriented object C++ software.

@and a seduced Squeak/Smalltalk developer

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

Focus on

Object programming concept

Inheritance, polymorphism, attribute

Writing proper object code:

e subtypes instead of subclasses

e is-a instead of part-of

o tell don't ask (polymorphism vs test block)
e write reusable code

Refactoring code
Writing tests

o responsibilities

@ An abstraction of a real world object with:
e behaviours

@ |t is not a data structure

«0O)>r «Fr «

@ Everything is an object

«O>r «Fr <

DA

@ Everything is an object

@ No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

«O>r «Fr « =»

« =

DA

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
®000000 00000000000

Key points

@ Everything is an object

@ No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

@ The model is consistent and uniform thanks to its pure object
aspect

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
®000000 00000000000

Key points

@ Everything is an object

@ No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

@ The model is consistent and uniform thanks to its pure object
aspect

@ High level iterators

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
®000000 00000000000

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that's it!

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
®000000 00000000000

Key points

@ Everything is an object

@ No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

@ The model is consistent and uniform thanks to its pure object
aspect

@ High level iterators
@ Objects, messages and closures, that's it!

@ No inextensible operators

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
®000000 00000000000

Key points

@ Everything is an object

@ No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

@ The model is consistent and uniform thanks to its pure object
aspect

High level iterators
Objects, messages and closures, that's it!

No inextensible operators

No public, protected or whatever object attributes — only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
O®00000 00000000000

The object model

Everything is an object

Only message sends and closures
Public methods

Protected attributes

Single Inheritance

Nothing special for static

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
OO®0000 00000000000

Smalltalk syntax in a postcard

exampleWithNumber: x

"A method that illustrates every part of Smalltalk method syntax
except primitives. It has unary, binary, and keyword messages,
declares arguments and temporaries, accesses a global variable
(but not an instance variable), uses literals (array, character,
symbol, string, integer, float), uses the pseudo variable true
false, nil, self, and super, and has sequence, assignment, return
and cascade. It has both zero argument and one argument blocks."

Iyl

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.
#(%a #a "a" 1 1.0) do:
[:each | Transcript show: (each class name); show: ’ ’].

x <y

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
00O®000 00000000000

Simplicity to concentrate on what matter

Single inheritence: easy to lookup for a method owner, it is in
self or ancestors

No trouble with type: only reference to object
No trouble with attributes: all protected.
No trouble with methods: all public.

Garbage collector

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000®00 00000000000

Coercion - implicit type conversion

Object can mutate when necessary, for example bellow a is a
reference to a Fraction instance, then to a SmallInteger
instance:

= 1/3.
class -> Fraction
:=a + (2/3)

a
a
a
a class -> SmallInteger

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
00000®0 00000000000

High level iterators

High level iterators are used with block closure.
@ selection in a number collection:
#(1 2 3 4 5) select: [:i | 1 odd] -> #(1 3 5)
@ calculus over a number collection:
#(1 2 3 4 5) collect: [:4 | 1 * 1] -> #(1 4 9 16 25)
@ transforming characters:

’taiwan’ withIndexCollect:
[:c :il
(i odd)
ifTrue: [c asUppercase]
ifFalse: [c]]
-> *TalwAn’

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
000000® 00000000000

As usual block closure are object:

@ It is anonymous method (= A-function in Scheme).
@ It can be passed to method as argument (see previous slide)
@ It can be referenced by a variable and used as a function:

f := [:x| (x raisedTo: 3)]
f value: 5
-> 125
(1 to: 10) collect: [:x | f value: x]
-> #(1 8 27 64 125 216 343 512 729 1000)

@ You will love it and you will use it a lot!

Contents About the speaker

The code browsers

The code browser — or simply the browser — is a central tool in

What is interesting to learn?

Smalltalk
0000000

Squeak IDE

®0000000000

Conclusion

Resources

Smalltalk development. It greatly helps the developer to write and

navigate the classes and methods.

x B System Browser: DGFigure

Refactory-Environment®
Refactory-Model 0
Refactory-Conditions
Refactory-Support
Refactory-Refactorings
Refactory-ChangeObiect
DrGeo-View

Drieo-Model

Drleo-Lib

DyGeo-LibTests

HML-Parser L
LIE]

O

DGFigure
DEMathObiect
MODirection
MOHalfLine
MOLine

MOPoint
MOPointConstrained
MOPointFres
MOPointFres0nCurve

b

-—all -

accessing
initialization
parsing figure
perform messages
as yet unclaszified

a

drawable
initialize

open:

origini

origin¥
parsebigure:
parseMathObject:
parsePointObject:
performHalfLine:
performline:
performPoint:
rerformdecment:

20|

| browse ” senders " implementors " Versions ” inheritance ” hierarchy " inst vars " clags vars ” suurcel

open:

&File

“Opes & Dr, Feo file”
IfiguresTres

figuresTres = (IMLDOMParser parseDocumentFromFileNamed: sfile) firstTagNamed: *drgenius.

figuresTres ifNil:

[self error: afile,
+nil]

" iz naot a Dr. Gea file.,

figurecTree tagsNamed: #drgeo do: [:tree | self parsefigure: iree],

0
n

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion

0000000 O@®000000000

SqueakMap package loader

A tool to install remote components, libraries or applications:

x B SqueakMap Package Loader (582/582)

This is where the selected
package or package release
is displayed

refactoring

Package name: Refacioring Browser for 3.5
version: 3.8.42

b Refastoring Browser for 3.4/
b Refactoring Browser for 3.7
= Refactoring Browser for 3.8

388
b Refactoring Engine ()
b ReflectiveDesigns §)
b Registries ()
P Regular Expression Plugin ()
b RemoteBroadesstingToolkit (R
kP emnteFrsmeRnffar
gl 3
P Squeak versions
Applications
Clasz libraries
b Compatibility level
Development tools
B Entertainment
b Licenses
I Maturity level
b Packase format

& ca 168!
Squeak versfons'STucskd - Releazed 25 May 2005,
Msiturity level/Bets - Useable tut still not statle, probatly
has bugs.

FPackage formatMarnticells - 4 " mez’ file format for use
with Monticello, It is gzipped,

Compsatibility levelCode chisnges. but arily bug fives - Code
has changed but only with bug fixes,

Campatibility level/Code chianges. may breask compsatibility -
Code has changed and may break <lients. tut not necessarily,

Licetises BT - The MIT license is like BSD without the
advertising clause, 4z free ag it gets, suitable for cross Smalltalk
100% reuse.

¥| | Wersion Comment:

Name: Refactory-md.3.6.42

| Author: md
A Time: 26 July 2005, 12:19:20 pm

UUID: 4566083e-9234-4341-a2c1-21 25daed57a1
Ancestors: Refactory-md.3.8.41

-r Moved additions from AbstractString to String
-» Deleted RefactoryInfo
-> comment for RESmalllictionary

Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

0000000 00®00000000
The method finder

Squeak is able to inspect itself to search a method according to a
pattern. Here with the pattern 'abed’ . 'bc’ . ’ad’ we can find
the string methods removing a substring from a string:

x B Selector Browser o
‘abed' L 'bet L tad’ *Collection copyWithoutsll: L
a

‘abod” copyWithoutdll: 'be - "ad’ =
n

v v
Tvpe a fragment of a selector in the top pane, Accept it :

Or, uze an example to find & method in the system. Type receiver,
arge, and answer in the top pane with periods between the items, 3.
4. 7

lan i tlain nesne 11am aaeennlen te fisd a rnetlhad e tlae arratoes Seloet

The inspector

With the inspector, while your program is running, you can very

comfortably:

Contents About the speaker What is interesting to learn?

Smalltalk
0000000

@ inspect your classes and its attributes

@ change your classes and attributes value while your

programme is running

x B a DGSegmentMorph(1324)

self’ = |Color red
all inst vars &
bounds

submorphs
fullBounds

extension
borderWidth
borderColor

filledForm

arrows

arrowEaorms
smoothCurve
curveState ™

self borderColor: Color yellow

@ o

Squeak IDE
000@0000000

Conclusion

Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 0000@000000

The debugger

With the debugger you can debug your running code and also fix
bugs and recompile on the fly the method. Then you resume your
work. Your application does not need to be restarted. Bellow a
halt point causes the debugger to open:

x B Halt =]
x B System Browser: M_

b WOFsin e Obfectyohalt O
Refactory-Testdata = DGFigure MOPointEreestranclat =
Refactory-Testing & DEMathObjsat DDPmntMDrph(DEMDrph)>>muusEane
Refactory-Environments | MODirection Morph
Retactory-Model MOHalfLine || MouseMoveEventssemtTo: G
Refactory-Conditions MOLine] - 3
Retactory-Suppart MOPoint
Refactory-Refactorings MOPointConsts | | Procesd || Restart || Into |[Over |[Through |[Full stack || where
Refactory-ChangeObjects MOPointEres
DrGeo-wew MOPointEreer; translate: sFoias
Drizeo-Model MOSegment self halt 5
DrGeo-Lib point := peint + {drawable morphToVector: sFainth
DrGeo-LibTests self update
XML-Parser &

Li instancze
oel o T
browse | senders | implementors |
translate: sFoitt vl
self by
_ self ¥ [a MOPointEres 5| | thisContext ¥ | _sa0 O
point := point + (drawable morphTo¥e: 1) inst vars (Al &l all temp vars o &
seIf update marhObjectList aPoint
style il) i '

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000@00000

The refactoring browser — RB

@ Refactoring code is frequent, it means moving, changing
section of code. Developer tools can assist the programmer to
refactor code safely.

@ The Squeak RB extents the classic browser with code
refactoring facilities. It helps — among other things — to safely
rename instance variables and methods. It checks down the
subclasses to rename the variable when necessary.

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion
0000000 OOOOOOe0000

SUnit test runner

Unit tests help to automatically check validity of some piece of
code (i.e. ensuring it effectively do the right computation)
Here a set of tests run over an application library:

DiPointTest --all —
DiVectorTest as et unclassified

arithmetic
transforming

testRef lexion

Pefactory-ChangeObiects testEotation

DrGeo-View

x B SUnit Test Runner

browse | senders | implementors DGFoiniTest

DEVectorTest

testRotation
v w2 pil
pi = -1 areCos,
v rotatedf: 0.25.
T2 =¥ rotatelf: pi £ 2 + 0.25,
self assert: (w1 * v2 closeTo: O).

Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 0000000000

The central tool

The browser is your central development tool:
@ to write new system categories and define classes, methods
@ to explore the hierarchies of the classes
@ to explore implementors and senders of methods

@ to explore the inheritance of your methods

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 0000000000

The central tool

The browser is your central development tool:
@ to write new system categories and define classes, methods

to explore the hierarchies of the classes

to explore implementors and senders of methods

to explore the inheritance of your methods

Let's look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion
0000000 00000000800

Incremental programming

Incremental programming is about smooth step by step
programming:
e Open a workspace to experiment your pieces of codes
@ The debugger will open when necessary (faulty code or
breakpoint), you will fix the code and continue your
experiment
e With the inspector examine the attribute values of your
classes

Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion
0000000 00000000800

Incremental programming

Incremental programming is about smooth step by step
programming:
e Open a workspace to experiment your pieces of codes

@ The debugger will open when necessary (faulty code or
breakpoint), you will fix the code and continue your
experiment

e With the inspector examine the attribute values of your
classes

Let's look at a live example...

Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 000000000e0

Learning from the class library

When you want to use an object but you don't know how, just use
the browser to explore the object and look at its methods. Here
exploring the system class Date:

date := Date today,

x B System Bmwser o
Kernel-Chronology ChronologyConstarnts --all -- addDavs: m]
Kernel-Chronology- Tes Date printing addMonths: a]
Kernel-Classes DateAndTime smalltalk-60 asDate I
Fernel-Classes-Tests Duration squeak protocel ashregorian
Kernel-Contexts Month deprecated asJulianDayNumber
Kernel-Magnitudes Schedule utils asSeconds
Kernel-Methods Stapwatch daylightSavingsinErTe
Fernel-Methods-Tests i L] JavlightSavingsInEffe
Kernel-Numbers L dayMonth¥earDho: D
[OETs B ¥l [EI<

[browse [sonders | implomentors | versions | mberitance | srarchy | mst vars | cass vars umm\

Timespan sutclass: *Date
instanceVariableNames:
classVariatleNames: ™
poolDictionaries: ‘ChronologyConstants’
category: ‘Kernel-Chronology'

Instances of Date are Timespans with duration of 1 day.
Their default creation assumes a start of midnight in the local time zone,

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 000000000e0

Learning from the class library

When you want to use an object but you don't know how, just use
the browser to explore the object and look at its methods. Here
exploring the system class Date:

date := Date today,

x B System Bmwser o
Kernel-Chronology ChronologyConstarnts --all -- addDavs: m]
Kernel-Chronology- Tes Date printing addMonths: a]
Kernel-Classes DateAndTime smalltalk-60 asDate I
Fernel-Classes-Tests Duration squeak protocel ashregorian
Kernel-Contexts Month deprecated asJulianDayNumber
Kernel-Magnitudes Schedule utils asSeconds
Kernel-Methods Stapwatch daylightSavingsinErTe
Fernel-Methods-Tests L] JavlightSavingsInEffe
Kernel-Numbers L dayMonth¥earDho: D
[OETs B ¥l [EI<

[browse [sonders | implomentors | versions | mberitance | srarchy | mst vars | cass vars umm\

Timespan sutclass: *Date
instanceVariableNames:
classVariatleNames: ™
poolDictionaries: ‘ChronologyConstants’
category: ‘Kernel-Chronology'

Instances of Date are Timespans with duration of 1 day.
Their default creation assumes a start of midnight in the local time zone,

Let's look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 0000000000

Saving our code

Beside saving the whole image, it is easy to save the specific code
we are working on with the Monticello browser. When writing
code, take care to:

e Define the Toto application classes in a Toto-* categories (i.e.
Toto-view, Toto-model, change Toto with your application
name)

@ When you need to add methods to a system class, define in
this class a *Toto-myCategory and define your methods inside.

@ Use the Monticello browser to save your code, on disk or
remotely.

For more information read: http://www.iam.unibe.ch/~scg/
Teaching/AdvancedLabs/PDFs/squeaktools. pdf

http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf
http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 0000000000

Saving our code

Beside saving the whole image, it is easy to save the specific code
we are working on with the Monticello browser. When writing
code, take care to:

e Define the Toto application classes in a Toto-* categories (i.e.
Toto-view, Toto-model, change Toto with your application
name)

@ When you need to add methods to a system class, define in
this class a *Toto-myCategory and define your methods inside.

@ Use the Monticello browser to save your code, on disk or
remotely.

For more information read: http://www.iam.unibe.ch/~scg/
Teaching/AdvancedLabs/PDFs/squeaktools. pdf

Let's look at a live example...

http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf
http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

What to remember?

Squeak is a virtual machine — VM — based environment.

The VM is fed with a multi-platform image file composing the
environment.

It is based — and written — on Smalltalk, a pure object
oriented language.

Squeak offers a large range of high level developer tools

Squeak offers new paradigm in software development as
incremental-compilation.

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

The future

@ The Squeak foundation —
http://smallwiki.unibe.ch/SqueakFoundation — a legal
entity to support the Squeak promotion.

@ Seaside — http://www.seaside.st — it is a frame work to
develop high level web application within the Squeak
environment. Basicly your are writting web application as you
are developping event controled desktop application plus you
take benefice of the Squeak IDE to develop and debugs.
ASTONISHING!

@ Tweak — http://tweak.impara.de — a rewrite of the
graphic morphic interface.

@ wxSqueak — http://www.wxsqueak.org — a wxWidget
wrapper for Squeak to write multiplateform application with
native look and fell.

e Croquet — http://www.opencroquet.org —a 3D
peer-to-peer authoring environment.

http://smallwiki.unibe.ch/SqueakFoundation
http://www.seaside.st
http://tweak.impara.de
http://www.wxsqueak.org
http://www.opencroquet.org

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources
0000000 00000000000

Academic resources

@ http://www.iam.unibe.ch/~ducasse/Teaching.html
@ http://www.eli.sdsu.edu/courses

@ http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/
introduction.htm

@ http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+
Education

@ http://www.whysmalltalk.com/universities/

http://www.iam.unibe.ch/~ducasse/Teaching.html
http://www.eli.sdsu.edu/courses
http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/introduction.htm
http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/introduction.htm
http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+Education
http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+Education
http://www.whysmalltalk.com/universities/

@ http://www.squeak.org
°

Free Smalltalk books:

http://www.iam.unibe.ch/~ducasse/FreeBooks.html
http://www.whysmalltalk.com

«O» «F»r «

DA

http://www.squeak.org
http://www.iam.unibe.ch/~ducasse/FreeBooks.html
http://www.whysmalltalk.com

	About the speaker
	What is interesting to learn?
	Smalltalk
	The language
	A few examples

	Squeak IDE
	A tour in some developer tools
	Programming scenarii

	Conclusion
	Resources

