
Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Squeak, learning oriented object programming with
the right tool

Hilaire Fernandes

CRDP Aquitaine - OFSET

Fall 2005

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

1 About the speaker

2 What is interesting to learn?

3 Smalltalk
The language
A few examples

4 Squeak IDE
A tour in some developer tools
Programming scenarii

5 Conclusion

6 Resources

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Working at CRDP Aquitaine - France, a resource centre for
pedagogical documentation and ICT in education. We do
consulting, support and development for the educational
institution.

President of the OFSET organisation, to support free software
development in education.

Author of Dr.Geo, an interactive geometry software. It is a
massive oriented object C++ software.

....and a seduced Squeak/Smalltalk developer

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Focus on

Object programming concept

Inheritance, polymorphism, attribute

Writing proper object code:

subtypes instead of subclasses
is-a instead of part-of
tell don’t ask (polymorphism vs test block)
write reusable code

Refactoring code

Writing tests

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

What are objects?

An abstraction of a real world object with:

responsibilities
behaviours

It is not a data structure

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Key points

Everything is an object

No trouble with type: only references to object. One may says
Smalltalk is strongly typed.

The model is consistent and uniform thanks to its pure object
aspect

High level iterators

Objects, messages and closures, that’s it!

No inextensible operators

No public, protected or whatever object attributes → only
protected

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The object model

Everything is an object

Only message sends and closures

Public methods

Protected attributes

Single Inheritance

Nothing special for static

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Smalltalk syntax in a postcard

exampleWithNumber: x

"A method that illustrates every part of Smalltalk method syntax

except primitives. It has unary, binary, and keyword messages,

declares arguments and temporaries, accesses a global variable

(but not an instance variable), uses literals (array, character,

symbol, string, integer, float), uses the pseudo variable true

false, nil, self, and super, and has sequence, assignment, return

and cascade. It has both zero argument and one argument blocks."

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a "a" 1 1.0) do:

[:each | Transcript show: (each class name); show: ’ ’].

^ x < y

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Simplicity to concentrate on what matter

Single inheritence: easy to lookup for a method owner, it is in
self or ancestors

No trouble with type: only reference to object

No trouble with attributes: all protected.

No trouble with methods: all public.

Garbage collector

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Coercion - implicit type conversion

Object can mutate when necessary, for example bellow a is a
reference to a Fraction instance, then to a SmallInteger

instance:

a := 1/3.

a class -> Fraction

a := a + (2/3)

a class -> SmallInteger

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

High level iterators

High level iterators are used with block closure.

selection in a number collection:

#(1 2 3 4 5) select: [:i | i odd] -> #(1 3 5)

calculus over a number collection:

#(1 2 3 4 5) collect: [:i | i * i] -> #(1 4 9 16 25)

transforming characters:

’taiwan’ withIndexCollect:

[:c :i|

(i odd)

ifTrue: [c asUppercase]

ifFalse: [c]]

-> ’TaIwAn’

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

As usual block closure are object:

It is anonymous method (≈ λ-function in Scheme).

It can be passed to method as argument (see previous slide)

It can be referenced by a variable and used as a function:

f := [:x| (x raisedTo: 3)]

f value: 5

-> 125

(1 to: 10) collect: [:x | f value: x]

-> #(1 8 27 64 125 216 343 512 729 1000)

You will love it and you will use it a lot!

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The code browsers

The code browser – or simply the browser – is a central tool in
Smalltalk development. It greatly helps the developer to write and
navigate the classes and methods.

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

SqueakMap package loader

A tool to install remote components, libraries or applications:

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The method finder

Squeak is able to inspect itself to search a method according to a
pattern. Here with the pattern ’abcd’ . ’bc’ . ’ad’ we can find
the string methods removing a substring from a string:

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The inspector

With the inspector, while your program is running, you can very
comfortably:

1 inspect your classes and its attributes
2 change your classes and attributes value while your

programme is running

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The debugger

With the debugger you can debug your running code and also fix
bugs and recompile on the fly the method. Then you resume your
work. Your application does not need to be restarted. Bellow a
halt point causes the debugger to open:

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The refactoring browser – RB

Refactoring code is frequent, it means moving, changing
section of code. Developer tools can assist the programmer to
refactor code safely.

The Squeak RB extents the classic browser with code
refactoring facilities. It helps – among other things – to safely
rename instance variables and methods. It checks down the
subclasses to rename the variable when necessary.

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

SUnit test runner

Unit tests help to automatically check validity of some piece of
code (i.e. ensuring it effectively do the right computation)
Here a set of tests run over an application library:

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The central tool

The browser is your central development tool:

to write new system categories and define classes, methods

to explore the hierarchies of the classes

to explore implementors and senders of methods

to explore the inheritance of your methods

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The central tool

The browser is your central development tool:

to write new system categories and define classes, methods

to explore the hierarchies of the classes

to explore implementors and senders of methods

to explore the inheritance of your methods

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Incremental programming

Incremental programming is about smooth step by step
programming:

Open a workspace to experiment your pieces of codes

The debugger will open when necessary (faulty code or
breakpoint), you will fix the code and continue your
experiment

With the inspector examine the attribute values of your
classes

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Incremental programming

Incremental programming is about smooth step by step
programming:

Open a workspace to experiment your pieces of codes

The debugger will open when necessary (faulty code or
breakpoint), you will fix the code and continue your
experiment

With the inspector examine the attribute values of your
classes

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Learning from the class library

When you want to use an object but you don’t know how, just use
the browser to explore the object and look at its methods. Here
exploring the system class Date:

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Learning from the class library

When you want to use an object but you don’t know how, just use
the browser to explore the object and look at its methods. Here
exploring the system class Date:

Let’s look at a live example...

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Saving our code

Beside saving the whole image, it is easy to save the specific code
we are working on with the Monticello browser. When writing
code, take care to:

Define the Toto application classes in a Toto-* categories (i.e.
Toto-view, Toto-model, change Toto with your application
name)

When you need to add methods to a system class, define in
this class a *Toto-myCategory and define your methods inside.

Use the Monticello browser to save your code, on disk or
remotely.

For more information read: http://www.iam.unibe.ch/~scg/

Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Let’s look at a live example...

http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf
http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Saving our code

Beside saving the whole image, it is easy to save the specific code
we are working on with the Monticello browser. When writing
code, take care to:

Define the Toto application classes in a Toto-* categories (i.e.
Toto-view, Toto-model, change Toto with your application
name)

When you need to add methods to a system class, define in
this class a *Toto-myCategory and define your methods inside.

Use the Monticello browser to save your code, on disk or
remotely.

For more information read: http://www.iam.unibe.ch/~scg/

Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Let’s look at a live example...

http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf
http://www.iam.unibe.ch/~scg/Teaching/AdvancedLabs/PDFs/squeaktools.pdf

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

What to remember?

Squeak is a virtual machine – VM – based environment.

The VM is fed with a multi-platform image file composing the
environment.

It is based – and written – on Smalltalk, a pure object
oriented language.

Squeak offers a large range of high level developer tools

Squeak offers new paradigm in software development as
incremental-compilation.

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

The future

The Squeak foundation –
http://smallwiki.unibe.ch/SqueakFoundation – a legal
entity to support the Squeak promotion.

Seaside – http://www.seaside.st – it is a frame work to
develop high level web application within the Squeak
environment. Basicly your are writting web application as you
are developping event controled desktop application plus you
take benefice of the Squeak IDE to develop and debugs.
ASTONISHING!

Tweak – http://tweak.impara.de – a rewrite of the
graphic morphic interface.

wxSqueak – http://www.wxsqueak.org – a wxWidget
wrapper for Squeak to write multiplateform application with
native look and fell.

Croquet – http://www.opencroquet.org – a 3D
peer-to-peer authoring environment.

http://smallwiki.unibe.ch/SqueakFoundation
http://www.seaside.st
http://tweak.impara.de
http://www.wxsqueak.org
http://www.opencroquet.org

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Academic resources

http://www.iam.unibe.ch/~ducasse/Teaching.html

http://www.eli.sdsu.edu/courses

http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/

introduction.htm

http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+

Education

http://www.whysmalltalk.com/universities/

http://www.iam.unibe.ch/~ducasse/Teaching.html
http://www.eli.sdsu.edu/courses
http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/introduction.htm
http://prog.vub.ac.be/~tjdhondt/POOL/HTM.dir/introduction.htm
http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+Education
http://wiki.cs.uiuc.edu/VisualWorks/VisualWorks+in+Education
http://www.whysmalltalk.com/universities/

Contents About the speaker What is interesting to learn? Smalltalk Squeak IDE Conclusion Resources

Other resources in the net

http://www.squeak.org

Free Smalltalk books:
http://www.iam.unibe.ch/~ducasse/FreeBooks.html

http://www.whysmalltalk.com

http://www.squeak.org
http://www.iam.unibe.ch/~ducasse/FreeBooks.html
http://www.whysmalltalk.com

	About the speaker
	What is interesting to learn?
	Smalltalk
	The language
	A few examples

	Squeak IDE
	A tour in some developer tools
	Programming scenarii

	Conclusion
	Resources

