Introduction to Blocks

Stéphane Ducasse and Damien Cassou

http://stephane.ducasse.free.fr/ stephane.ducasse@inria.fr

Objectives

m Called closures or lexical closures in other languages.
m Just introduced in Java 8.0.

m Really important and are at the heart of Pharo.

m Used for loops, conditionals and iterators.

m You can define your own control flow.

m Used in Ul development.

m Really powerful concept

m As a first approximation, blocks are kind of anonymous methods

Block Syntax

m a block is delimited by []

[expressions....]

A Block

m Executing (1 /0) raises an error.

(1/0)
—> Error

m Executing [1 /0] does not raise an error because the block body is not executed.

[1/0]
>[1/0]

m If we do not ask a block to be executed, nothing happens.

A Block is Freezing Computation

m A block is not executed.
m A block blocks execution: its body is not executed.

[2+6]
>[2+6]

Another view

m Turns a program into 'data’

Executing a Block

To execute a block we should ask explicitly its execution using the message value
[2 +6]value
>8

[1/0]value
> Error

A Block with one argument

m A bloc can take arguments (the same way a method can)
[x]|x+2]
m [] delimits the block.

m X is block argument.
m x+2 is the block body.

[x|x+2]value: 5
>7

m value: is a message that executes a block passing a value, here 5 as argument. x
will have the value 5.

Block execution value

m Execution returns the value of the last expression

[x]

X + 33.

X + 2] value: 5
>7

Blocks can be stored

m We can store a block in variable
m A block can be executed multiple times

|b|
b:=[x|x+2].

b value: 5
>7

b value: 33
> 35

Blocks are used to express conditions

max: anObject
"Answer the receiver or the argument, whichever has the greater anObject."

self > anObject

ifTrue: [* self]
ifFalse: [* anObject]

Yes this is a message ifTrue:ifFalse: sent to a Boolean

Blocks are used to express loops

m Some simple loops
m Printing 10 dots

10 timesRepeat: [File stdout << .’]

Blocks are used to express loops

1 to: 10 do: [:i | File stdout <<i]
> 12345678910

Blocks are used to express loops

m a traditional for loop for i=1,100, i++

1 to: 100 by: 3 do: [:i | File stdout <<i]
> 147101316192225283134374043464952555861646770737679828588919497100

Blocks are used to express loops

m Basis for iterators

#(245 —4 3 —2) collect: [:each | each abs]
>#(245432)

Full Syntax

A Design Advice

m Do not use blocks with too many arguments (3 max).
m Use object instead of block if you should pass more arguments.
m A block is only one single computation it cannot embed more facets (printing, testing)

Return in a bloc, return from the method

m When a block containing a return is executed, computation exits the method that
defined the block.

Integer>>factorial
"Answer the factorial of the receiver."

self =0 ifTrue: [~ 1].
self > 0 ifTrue: [* self = (self — 1) factorial].
self error: 'Not valid for negative integers’

More precisely

m When a block containing a return is executed, computation returns from the method
that defined the block.

m Since blocks can be passed around, from methods to methods, blocks behaves as an
exception mechanism.

m Do not overuse this mechanim, better use Exception
m Always think twice when you put a return in a block

Exercises

m Guess how to execute a block taking two arguments

[x:y|x+y] 57
>12

m Read the BlockClosure class
m Propose a non recursive definition of factorial

20

Other examples

21

Yes ifTrue:ifFalse: is a message!

Weather isRaining
ifTrue: [self takeMyUmbrella]
ifFalse: [self takeMySunglasses]

m Conceptually ifTrue:ifFalse: is a message sent to an object: a boolean!
m ifTrue:ifFalse: is in fact radically optimized by the compiler.
m Implement another one such as siAlors:sinon: and try it at home.

22

Implementing if True:ifFalse:

m Do you see the pattern?

m Remember that a closure blocks execution and that the message value launches
the execution of a frozen code.

m Propose an implementation

23

Implementing if True:ifFalse:

m Let us the receiver decides!

True>> ifTrue: aTrueBlock ifFalse: aFalseBlock
A aTrueBlock value

False>> ifTrue: aTrueBlock ifFalse: aFalseBlock
A aFalseBlock value

24

Implementation Note

m Note that the Virtual Machine shortcuts calls to Boolean such as condition for speed
reason.

m But you can implement your own conditional methods and debug to see that sending
a message is dispatching to the right object.

25

Summary

[:variable1 :variable2 ... |
[tmp |
expressioni.
...variablet ...

]

value: ...

m Approximately similar to anonymous method

m Technically lexical closures

m Can be passed as arguments to methods, stored in instance variables
m Basis of conditionals

m Basis of iterators (See following lecture)

m Further readings: http://deepintopharo.org

26

http://deepintopharo.org

