
Introduction to Blocks

Stéphane Ducasse and Damien Cassou

http://stephane.ducasse.free.fr/ stephane.ducasse@inria.fr

1

Objectives

Called closures or lexical closures in other languages.
Just introduced in Java 8.0.
Really important and are at the heart of Pharo.
Used for loops, conditionals and iterators.
You can define your own control flow.
Used in UI development.
Really powerful concept

As a first approximation, blocks are kind of anonymous methods

2

Block Syntax

a block is delimited by []

[expressions....]

3

A Block

Executing (1 / 0) raises an error.

(1 / 0)
−> Error

Executing [1 / 0] does not raise an error because the block body is not executed.

[1 / 0]
> [1 /0]

If we do not ask a block to be executed, nothing happens.

4

A Block is Freezing Computation

A block is not executed.
A block blocks execution: its body is not executed.

[2 + 6]
> [2 + 6]

5

Another view

Turns a program into ’data’

1
> 1

’abc’
> ’abc’

[2 + 6]
> [2 + 6]

6

Executing a Block

To execute a block we should ask explicitly its execution using the message value

[2 + 6] value
> 8

[1 / 0] value
> Error

7

A Block with one argument

A bloc can take arguments (the same way a method can)

[:x | x + 2]

[] delimits the block.

:x is block argument.

x+2 is the block body.

[:x | x + 2] value: 5
> 7

value: is a message that executes a block passing a value, here 5 as argument. x
will have the value 5.

8

Block execution value

Execution returns the value of the last expression

[:x |
x + 33.
x + 2] value: 5

> 7

9

Blocks can be stored

We can store a block in variable
A block can be executed multiple times

| b |
b := [:x | x + 2].

b value: 5
> 7

b value: 33
> 35

10

Blocks are used to express conditions

max: anObject
"Answer the receiver or the argument, whichever has the greater anObject."

self > anObject
ifTrue: [^ self]
ifFalse: [^ anObject]

Yes this is a message ifTrue:ifFalse: sent to a Boolean

11

Blocks are used to express loops

Some simple loops
Printing 10 dots

10 timesRepeat: [File stdout << ’.’]
>

12

Blocks are used to express loops

1 to: 10 do: [:i | File stdout << i]
> 12345678910

13

Blocks are used to express loops

a traditional for loop for i=1,100, i++

1 to: 100 by: 3 do: [:i | File stdout << i]
> 147101316192225283134374043464952555861646770737679828588919497100

14

Blocks are used to express loops

Basis for iterators

#(2 4 5 −4 3 −2) collect: [:each | each abs]
> #(2 4 5 4 3 2)

15

Full Syntax

[:blockArg1 :blocArg2 |
| localVariable |
expression1.
expression2.

expressionn]

16

A Design Advice

Do not use blocks with too many arguments (3 max).
Use object instead of block if you should pass more arguments.
A block is only one single computation it cannot embed more facets (printing, testing)

17

Return in a bloc, return from the method

When a block containing a return is executed, computation exits the method that
defined the block.

Integer>>factorial
"Answer the factorial of the receiver."

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self − 1) factorial].
self error: ’Not valid for negative integers’

18

More precisely

When a block containing a return is executed, computation returns from the method
that defined the block.
Since blocks can be passed around, from methods to methods, blocks behaves as an
exception mechanism.
Do not overuse this mechanim, better use Exception
Always think twice when you put a return in a block

19

Exercises

Guess how to execute a block taking two arguments

[:x :y | x + y] 5 7
> 12

Read the BlockClosure class
Propose a non recursive definition of factorial

20

Other examples

[2 + 3 + 4 + 5] value
> 14
[:x | x + 3 + 4 + 5] value: 2
> 14
[:x :y | x + y + 4 + 5] value: 2 value: 3
> 14

21

Yes ifTrue:ifFalse: is a message!

Weather isRaining
ifTrue: [self takeMyUmbrella]
ifFalse: [self takeMySunglasses]

Conceptually ifTrue:ifFalse: is a message sent to an object: a boolean!

ifTrue:ifFalse: is in fact radically optimized by the compiler.

Implement another one such as siAlors:sinon: and try it at home.

22

Implementing ifTrue:ifFalse:

Do you see the pattern?
Remember that a closure blocks execution and that the message value launches
the execution of a frozen code.
Propose an implementation

23

Implementing ifTrue:ifFalse:

Let us the receiver decides!

True>> ifTrue: aTrueBlock ifFalse: aFalseBlock
^ aTrueBlock value

False>> ifTrue: aTrueBlock ifFalse: aFalseBlock
^ aFalseBlock value

24

Implementation Note

Note that the Virtual Machine shortcuts calls to Boolean such as condition for speed
reason.
But you can implement your own conditional methods and debug to see that sending
a message is dispatching to the right object.

25

Summary

[:variable1 :variable2 ... |
| tmp |
expression1.
...variable1 ...
]
value: ...

Approximately similar to anonymous method
Technically lexical closures
Can be passed as arguments to methods, stored in instance variables
Basis of conditionals
Basis of iterators (See following lecture)
Further readings: http://deepintopharo.org

26

http://deepintopharo.org

