
To the Roots of Dispatch and Objects
Deeply understanding the essence of method dispatch

Stéphane Ducasse and Damien Cassou

http://stephane.ducasse.free.fr/
stephane.ducasse@inria.fr

1

Table Of Content

1 Booleans in Pharo

2 Exercices
Exercise 1: Implement not
Exercise 2: Implement | (Or) ifTrue: ifFalse:

3 Boolean Implementation

4 So what ?

5 Summary

2

A cornerstone point

Message passing, "method invocation", method dynamic selection are the heart of
object-oriented programming. The lecture will rethink this essential and fundamental
aspect of object-oriented programming using some simple examples. After this lecture
you will never look the same your programs.

3

Motto

Let’s open our eyes, look, understand, and deeply understand the underlying design
aspects of object-oriented programming.

4

Booleans in Pharo

Booleans in Pharo 5

Booleans

3 > 0
ifTrue: [’positive’]
ifFalse: [’negative’]

−> ’positive’

Conceptually ifTrue:ifFalse: is a message sent to an object: a boolean!

ifTrue:ifFalse: is in fact radically optimized by the compiler but you can implement
another one such as siAlors:sinon: and try it at home.

Booleans in Pharo 6

Booleans

In Pharo, Booleans have nothing special, just a superb implementation!

& | not
or: and: (lazy)
xor:
ifTrue:ifFalse:
ifFalse:ifTrue:
=>
....

Booleans in Pharo 7

Exercices

Exercices 8

Three Exercises

1 Implement not

2 Implement | (or)
3 Why such exercises? What these exercises want to show us?

Exercices 9

Exercise 1: Implement not

Exercices Exercise 1: Implement not 10

Exercise 1: Implement not

Propose an implementation of not in a world where you do not have Booleans
implemented yet.
You only have objects and messages.

false not
−> true

true not
−> false

Exercices Exercise 1: Implement not 11

Exercise 2: Implement | (Or) ifTrue: ifFalse:

Exercices Exercise 2: Implement | (Or) ifTrue: ifFalse: 12

Exercise 2: Implement | (Or)

Propose an implementation of or (named | in Pharo) in a world where you do not
have Booleans.
You only have objects and messages.

true | true −> true
true | false −> true
true | anything −> true

false | true −> true
false | false −> false
false | anything −> anything

Exercices Exercise 2: Implement | (Or) ifTrue: ifFalse: 13

Exercise 2: Variation - Implement ifTrue:ifFalse:

Propose an implementation of ifTrue:ifFalse: in a world where you do not have
Booleans.
You only have objects, messages and closures.

false ifTrue: [3] ifFalse: [5]
−> 5

true ifTrue: [3] ifFalse: [5]
−> 3

Exercices Exercise 2: Implement | (Or) ifTrue: ifFalse: 14

Boolean Implementation

Boolean Implementation 15

Booleans Implementation Hint One

The solution does not use conditionals
Else we would obtain a recursive definition of ifTrue:ifFalse:

Boolean Implementation 16

Boolean Implementation Hint Two

The solution uses three classes: Boolean , True and False
false and true are unique instances described by their own classes
false is an instance of the class False
true is an instance of the class True

Boolean Implementation 17

How do we express choice in OOP?

We send messages to objects

...

...
x color
−> Color red

where x can be a button, a pane, a window, a magic card, a bird

Let’s the receiver decide

Do not ask, tell

Boolean Implementation 18

Boolean not implementation

Class Boolean is an abstract class that implements behavior common to true and
false. Its subclasses are True and False .

Subclasses must implement methods for logical operations & , not , and controls
and: , or: , ifTrue: , ifFalse: , ifTrue:ifFalse: , ifFalse:ifTrue:

Boolean>>not
"Abstract method. Negation: Answer true if the receiver is false, answer false if the receiver is true."
self subclassResponsibility

Boolean Implementation 19

Not implementation in two methods

False>>not
"Negation −− answer true since the receiver is false."
^ true

True>>not
"Negation−−answer false since the receiver is true."
^ false

Boolean Implementation 20

Not implementation in two methods

Boolean Implementation 21

Not implementation in two methods

Boolean Implementation 22

| (Or)

true | true −> true
true | false −> true
true | anything −> true

false | true −> true
false | false −> false
false | anything −> anything

Boolean Implementation 23

Boolean» | aBoolean

Boolean>> | aBoolean
"Abstract method. Evaluating disjunction (OR): Evaluate the argument. Answer true if either the receiver
or the argument is true."
self subclassResponsibility

Boolean Implementation 24

False» | aBoolean

false | true −> true
false | false −> false
false | anything −> anything

Boolean Implementation 25

False» | aBoolean

false | true −> true
false | false −> false
false | anything −> anything

False >> | aBoolean
"Evaluating disjunction (OR) −− answer with the argument, aBoolean."
^ aBoolean

Boolean Implementation 26

True» | aBoolean

true | true −> true
true | false −> true
true | anything −> true

Boolean Implementation 27

True» | aBoolean

true | true −> true
true | false −> true
true | anything −> true

True>> | aBoolean
"Evaluating disjunction (OR) −− answer true since the receiver is true."
^ true

Boolean Implementation 28

True» | aBoolean

true | true −> true
true | false −> true
true | anything −> true

True>> | aBoolean
"Evaluating disjunction (OR) −− answer true since the receiver is true."
^ true

The object true is indeed the receiver of the message!

True>> | aBoolean
"Evaluating disjunction (OR) −− answer true since the receiver is true."
^ self

Boolean Implementation 29

Or implementation in two methods

Boolean Implementation 30

So what ?

So what ? 31

Ok so what?

You will probably not implement Booleans in the future
So is it really that totally useless?
What is the lesson to learn?

So what ? 32

Message sends act as case statements

Message sends act as case statements
But with messages, the case statements is dynamic in the sense that it depends on
the classes loaded and the objects to which the message is sent.

So what ? 33

Sending a message is making a choice

The execution engine will select the right method depending on the class of the
receiver.
Each time you send a message, the system will select the method corresponding to
the receiver.
Sending a message is a choice operator.

So what ? 34

Question

Could we have been able to implement the same implementation in only one class?

So what ? 35

Question

Could we have been able to implement the same implementation in only one class?
NO NO NO

So what ? 36

Class play case roles

To have the possibility to activate the choice operator you must have choices =
classes
If we would have said that the Boolean would be composed of only one class, we
could not have use dynamic binding.

So what ? 37

A Class Hierarchy is a Skeleton for Dynamic Dispatch

A class hierarchy is the exoskeleton for dynamic binding.
Compare the solution with one class vs. a hierarchy.

So what ? 38

Advantages of small class hierarchy

The hierarchy provides a way to specialize behavior.
It is also more declarative in the sense that you only focus on one class.
It is more modular in the sense that you can package different classes in different
packages.
You can also load classes separately.

So what ? 39

Do not ask, tell

Sending a message let the receiver decide.
The client does not have to decide.
Client code is not fixed. Different receivers may be substitued dynamically

So what ? 40

Avoid Conditionals

Use objects and messages, when you can.
The execution engine acts as a conditional switch: Use it!
Check the AntiIfCampaign.

So what ? 41

Follow-up: Implement ternary logic

Boolean: true , false , unknown

Implementing in your own classes.

So what ? 42

Summary

Summary 43

Summary

Tell, do not ask
Let the receiver decide
Message sends as potential dynamic conditional
Class hiearchy builds a skeleton for dynamic dispatch
Avoid conditional

Summary 44

	 Booleans in Pharo
	Exercices
	Exercise 1: Implement not
	Exercise 2: Implement | (Or) ifTrue: ifFalse:

	 Boolean Implementation
	 So what ?
	 Summary

