lterators

Stéphane Ducasse

http://stephane.ducasse.free.fr/
stephane.ducasse@inria.fr

Objectives

m Understand iterators
m Offer an overview

Pharo code is Compact!

ArrayList<String> strings = new ArrayList<String>();
for(Person person: persons)
strings.add(person.name());

strings := persons collect: [:person | person name]

m Yes in Java 8.0 it will be finally simpler.
m But it is like that in Pharo since day one!
m lterators are deep into the core of the language.

A first iterator: collect:

m collect: applies the block to each element and returns a collection (of the same kind
than the receiver) with the results

#(2 —3 4 —35 4) collect: [:each | each abs]
> #(234354)

m collect: sends the message abs (absolute) to each element of the receiver
m and returns the resulting collection.
m What we see is that we ask the collection to do something for us.

Another collect: example

m We want to know if each elements is odd or even.

#(16 11 68 19) collect: [:i | i odd]

> #(false true false true)

Choose your camp!

#(16 11 68 19) collect: [:i | i odd]

m We can also do it that way!

| result |
aCol := #(16 11 68 19).
result := aCol species new: aCol size.
1 to: aCollection size do:
[:each | result at: each put: (aCol at: each) odd].
A result

m Here we copied the definition of collect: , to show how we could expressed the same
behavior but this is error prone, verbose and tedious.

Part of the collection hierarchy

m lterators work polymorphically on the entire collection hierarchy.

Collection
Seq bleCollection]| [HashedCollection] | Bag |
<
LinkedList
Tnterval ? Dictionary
[ArrayedCollection] [OrderedCollection]
A R A

[IdentityDictionary | [KeyedTree |

\ [Text] [SortedCollection
PluggableDictionary

IdentitySet
PluggableSet

Array

Part of the Collection hierarchy.

Think objects!

m With iterators we ask the collection to iterate on itself.
m As a client we do not have to know the internal details of the collection.
m Each collection can implement differently the iterator.

Basic lterators Overview

do: (iterate)

collect: (iterate and collect results)

select: (select matching elements)

reject: (reject matching elements)

detect: (get first element matching)

detect:ifNone: (get first element matching or a default value)

[|
|
m includes: (test inclusion)
m and a lot more...

do: an action on each element

m lterates on each elements
m Applies the block on each elements

#(16 11 68 19) do: [:each | Transcript show: each ; cr]

m Here we print each elements and insert a carriage return.

x — 0O Transcript

16
11
68
13

select: elements matching a criteria

m Select some elements

#(16 11 68 19) select: [:element | element odd]

select: elements matching a criteria

m Select some elements

#(16 11 68 19) select: [:i | i odd]

> #(11 19)

With unary messages, no block needed

When a block expects a single argument, we can pass an unary message selector
#(16 11 68 19) select: [:i | i odd]

is equivalent to
#(16 11 68 19) select: #odd

reject: elements matching a criteria

m Filter some elements

#(16 11 68 19) reject: [:i|iodd]

reject: elements matching a criteria

m Filter some elements

#(16 11 68 19) reject: [:i|iodd]

> #(16 68)

detect: the first elements that...

m First element that matches

#(16 11 68 19) detect: [:i|iodd]

detect: the first elements that...

m First element that matches

#(16 11 68 19) detect: [:i|iodd]

> 11

detect:ifNone:

m First element that matches else return a value

#(16 12 68 20) detect: [:i|iodd] ifNone:[0]

detect:ifNone:

m First element that matches else return a value

#(16 12 68 20) detect: [:i | i odd] ifNone: [0]

>0

Some other iterators

m anySatisfy: (tests if one object is satisfying the criteria)
m allSatisfy: (tests if all objects are satisfying the criteria)

m reverseDo: (do an action on the collection starting from the end)
m doWithindex: (do an action with the element and its index)
m pairsDo: (evaluate aBlock with my elements taken two at a time.)

m permutationsDo:

20

Exercises

Propose some expressions to illustrate ther uses of
m anySatisfy: (tests if one object is satisfying the criteria)
m allSatisfy: (tests if all objects are satisfying the criteria)

m reverseDo: (do an action on the collection starting from the end)
m doWithindex: (do an action with the element and its index)
m pairsDo: (evaluate aBlock with my elements taken two at a time.)

m permutationsDo:

21

Exciting ones

m How to produce?

22

Exciting ones

m How to produce?

#('a' ’b’’c’) message
>’a, b, ¢

#('a’) message
>'a

#() message

>

m Use doSeparatedBy:

String streamContents: [:s |
#(a' 'b’’c’)
do: [:each | s << each]
separatedBy: [s <<,]

]

23

lterating two structures

#(1 2 3)
with: #(10 20 30)
do: [:x :y | Transcript show: (y = x) ; cr]

x =0 Transcript

10
40
90

m with:do: requires two structures of the same length.

24

Grouping elements

m groupedBy:
#(1 23456 7) groupedBy: #even

a PluggableDictionary(false—>#(1 3 5 7) true—>#(2 4 6))

25

Flattening results

m How to remove one level of nesting in a collection?
m Use flatCollect:

#(#(1 2) #(3) #(4) #(5 #(6 7 3))) collect: [:each | each]

> #(#(1 2) #(3) #(4) #(5 #(6 7 3)))

#(#(1 2) #(3) #(4) #(5 #(6 7 3))) flatCollect: [:each | each]

>#(12345#(673))

26

Opening the box

m You can learn and discover the system.
m You can define your own.
m How do: is implemented?

SequenceableCollection>>do: aBlock
"Evaluate aBlock with each of the receiver’s elements as the argument.”

1 to: self size do: [:i | aBlock value: (self at: i)]

27

Analysis

m lterators are really powerful because they support polymorphic code.
m All the collections support them.

m New ones are defined.

m Missing controlled navigation as in the lterator design pattern.

28

Summary

m lterators are your best friends
m Simple and powerful
m Enforce encapsulation of collections and containers

29

