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Objectives

Understand iterators
Offer an overview
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Pharo code is Compact!

ArrayList<String> strings = new ArrayList<String>();
for(Person person: persons)

strings.add(person.name());

strings := persons collect: [ :person | person name ]

Yes in Java 8.0 it will be finally simpler.
But it is like that in Pharo since day one!
Iterators are deep into the core of the language.
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A first iterator: collect:

collect: applies the block to each element and returns a collection (of the same kind
than the receiver) with the results

#(2 −3 4 −35 4) collect: [ :each | each abs ]
> #(2 3 4 35 4)

collect: sends the message abs (absolute) to each element of the receiver
and returns the resulting collection.
What we see is that we ask the collection to do something for us.
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Another collect: example

We want to know if each elements is odd or even.

#(16 11 68 19) collect: [ :i | i odd ]

> #(false true false true)
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Choose your camp!

#(16 11 68 19) collect: [ :i | i odd ]

We can also do it that way!

| result |
aCol := #(16 11 68 19).
result := aCol species new: aCol size.
1 to: aCollection size do:

[ :each | result at: each put: (aCol at: each) odd ].
^ result

Here we copied the definition of collect: , to show how we could expressed the same
behavior but this is error prone, verbose and tedious.
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Part of the collection hierarchy

Iterators work polymorphically on the entire collection hierarchy.

Part of the Collection hierarchy.
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Think objects!

With iterators we ask the collection to iterate on itself.
As a client we do not have to know the internal details of the collection.
Each collection can implement differently the iterator.
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Basic Iterators Overview

do: (iterate)

collect: (iterate and collect results)

select: (select matching elements)

reject: (reject matching elements)

detect: (get first element matching)

detect:ifNone: (get first element matching or a default value)

includes: (test inclusion)
and a lot more...
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do: an action on each element

Iterates on each elements
Applies the block on each elements

#(16 11 68 19) do: [ :each | Transcript show: each ; cr ]

Here we print each elements and insert a carriage return.
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select: elements matching a criteria

Select some elements

#(16 11 68 19) select: [ :element | element odd ]
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select: elements matching a criteria

Select some elements

#(16 11 68 19) select: [ :i | i odd ]

> #(11 19)
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With unary messages, no block needed

When a block expects a single argument, we can pass an unary message selector

#(16 11 68 19) select: [ :i | i odd ]

is equivalent to

#(16 11 68 19) select: #odd
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reject: elements matching a criteria

Filter some elements

#(16 11 68 19) reject: [ :i | i odd ]
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reject: elements matching a criteria

Filter some elements

#(16 11 68 19) reject: [ :i | i odd ]

> #(16 68)
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detect: the first elements that...

First element that matches

#(16 11 68 19) detect: [ :i | i odd ]
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detect: the first elements that...

First element that matches

#(16 11 68 19) detect: [ :i | i odd ]

> 11
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detect:ifNone:

First element that matches else return a value

#(16 12 68 20) detect: [ :i | i odd ] ifNone: [ 0 ]
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detect:ifNone:

First element that matches else return a value

#(16 12 68 20) detect: [ :i | i odd ] ifNone: [ 0 ]

> 0
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Some other iterators

anySatisfy: (tests if one object is satisfying the criteria)

allSatisfy: (tests if all objects are satisfying the criteria)

reverseDo: (do an action on the collection starting from the end)

doWithIndex: (do an action with the element and its index)

pairsDo: (evaluate aBlock with my elements taken two at a time.)

permutationsDo:
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Exercises

Propose some expressions to illustrate ther uses of

anySatisfy: (tests if one object is satisfying the criteria)

allSatisfy: (tests if all objects are satisfying the criteria)

reverseDo: (do an action on the collection starting from the end)

doWithIndex: (do an action with the element and its index)

pairsDo: (evaluate aBlock with my elements taken two at a time.)

permutationsDo:
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Exciting ones

How to produce?

#(’a’ ’b’ ’c’) message
> ’a, b, c’

#(’a’) message
> ’a’

#() message
> ’’

]]]
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Exciting ones

How to produce?

#(’a’ ’b’ ’c’) message
> ’a, b, c’

#(’a’) message
> ’a’

#() message
> ’’

Use doSeparatedBy:

String streamContents: [ :s |
#(’a’ ’b’ ’c’)

do: [ :each | s << each ]
separatedBy: [ s << ’, ’]

]
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Iterating two structures

#(1 2 3)
with: #(10 20 30)
do: [ :x :y | Transcript show: (y * x) ; cr ]

with:do: requires two structures of the same length.
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Grouping elements

groupedBy:

#(1 2 3 4 5 6 7 ) groupedBy: #even

a PluggableDictionary(false−>#(1 3 5 7) true−>#(2 4 6) )
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Flattening results

How to remove one level of nesting in a collection?
Use flatCollect:

#( #(1 2) #(3) #(4) #(5 #(6 7 3))) collect: [ :each | each ]

> #(#(1 2) #(3) #(4) #(5 #(6 7 3)))

#( #(1 2) #(3) #(4) #(5 #(6 7 3))) flatCollect: [ :each | each ]

> #(1 2 3 4 5 #(6 7 3))
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Opening the box

You can learn and discover the system.
You can define your own.
How do: is implemented?

SequenceableCollection>>do: aBlock
"Evaluate aBlock with each of the receiver’s elements as the argument."

1 to: self size do: [:i | aBlock value: (self at: i)]
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Analysis

Iterators are really powerful because they support polymorphic code.
All the collections support them.
New ones are defined.
Missing controlled navigation as in the Iterator design pattern.
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Summary

Iterators are your best friends
Simple and powerful
Enforce encapsulation of collections and containers
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