
Parenthesis Vs. Square Brackets

Stéphane Ducasse and Damien Cassou

http://stephane.ducasse.free.fr/
stephane.ducasse@inria.fr

1

() vs. []

() just changes the priority of an execution but the program is executed.

[] blocks program execution: the program is NOT executed.

Therefore use [] when you do not know if your program will be executed.
When the message can change the execution of your program (if, while, ...) use a
block.

n timesRepeat: [self doSomething]

timesRepeat: executes a number of times its argument, therefore the argument is a
block

2

() vs. [] Example

x includes: 3 ifTrue: [...]

The message is read as includes:ifTrue: and does not exist

(x includes: 33) ifTrue: [self doSomething]

We use () and not [] for the receiver (x includes: 33) because this expression
should be executed only once.
we use () because we should make sure that the compiler identifies two messages:

includes: and ifTrue: and not just one includes:ifTrue:

We should use parentheses because we want includes: to be executed first.

3

() vs. [] Example

x isNil ifTrue: [self doSomething]

ifTrue: may execute or not its argument, therefore the argument is a block

4

() vs. [] Example

[self start] whileTrue: [self doSomething]

whileTrue: may execute both its receiver and argument multiple times, therefore
they are both a block.

5

Quiz

1 to: 100 do: ... self doSomething ...

x ifEmpty: ... self doSomething ...

6

Quiz

1 to: 100 do: [:i | self doSomething]

x ifEmpty: [self doSomething]

7

Summary

() is about changing the order of a computation.

[] is freezing the computation and controlling it.

8

